
Packages

Jim Fawcett
Copyright © 1994 – 2010

CSE687 – Object Oriented Design

Spring 2010

Chapter 1 - Packages 2

Package Definition

• A Package is a physical packaging of source code into
files.

• A server Package provides services to higher level
Packages.

• An executive Package coordinates the activities of
the program’s server Packages.

Chapter 1 - Packages 3

Executive

Server1

Server2

Server3

Server4

A Typical Structure

Chapter 1 - Packages 4

Include Relationships

Executive.cpp

Server1.h Server2.h Server3.h

Server4.hServer1.cpp

Server1's public

interface depends

on Server4

Server4.cpp

Server2.cpp Server3.cpp

Server4's private

implementation

depends on

Server2

Chapter 1 - Packages 5

Package Definition

• A Package is a physical package of source code into files.
– Each reusable Package should focus on a single activity, e.g., it is cohesive. Most

server Packages should attempt to be reusable.
– Not all Packages should try to be reusable. Executive Packages are not - they must

focus on all of the program’s responsibilities – but at a very high level.

• A server Package provides services to higher level Packages. A C++ Package
consists of:

– A header file (.h extension)
• Has a typed interface, provided to ensure type consistency with all Packages using its services.
• Announces the services of the Package to potential users through a manual page and function

and class declarations.

– An implementation file (.cpp extension) that provides the Package’s services through
global function and class member function implementations.

• This file provides a prologue, the Package’s definitions, and a test stub.
• Test stubs are used for construction tests to quickly check the correctness of recently added or

modified code.

• An executive Package coordinates the activities of the program’s server
Packages.

– Often an executive Package only has an implementation file since it has no need to
announce it’s services.

Chapter 1 - Packages 6

A Note about this Definition

• In all of the design courses covered by this web site, we use the
definition for Packages provided on the previous page, and you are
expected to implement all of your submitted projects in this
modular fashion.

• I often use the term Module as a synonym for Package. However,
not everyone uses this definition. For example, throughout
Microsoft’s .Net literature they use the term Module to mean a
binary file that becomes part of an assembly, e.g., a dll or an exe.

• Some others use the preceding definition in a looser way, for
example, allowing multiple header files for a single implementation
file. This is expressly forbidden by our definition.

Chapter 1 - Packages 7

Why Two Files?

• Why not allow a Package to consist of just a header file?

– You often see this done to define macros and inline functions.

• Header files announce services which, occasionally, can be
implemented as inline functions or macros.

– Even if everything a header declared is implemented inline, the
Package should provide a test stub.

– If the services are important enough to place in their own Package,
then they are important enough to be tested before including in a
larger system.

• The only time a Package with only a header file is permitted in this
course is when the header defines an interface, but no more.

– Interfaces have no implementation.

– They just declare a contract for services, provided by other Packages.

Chapter 1 - Packages 8

Limitation of Single File Program

• What’s wrong with a single file program?

– Nothing, but as programs grow larger, this format becomes
very limiting.

– Programs grow too large to comprehend as a single entity.

– Eventually, as file size grows, a compiler can not swallow
the whole file.

Chapter 1 - Packages 9

Limitation of Single File Program

• Solution:

– break programs up into Packages

– Packages allow a program to be decomposed into smaller
units of understanding, test, release, and configuration
management.

– In C++ each server Package consists of two files:

– A header file contains all public declarations so other
Packages know how to use this Package’s services

– an implementation file contains all data and function
definitions; that is, it provides the services that the
header file announces

Chapter 1 - Packages 10

Information Cluster

Logical View:
• An information cluster encapsulates complex, sensitive, global, or device dependent data,

along with functions which manage the data, in a container with internals not accessible to
client view.

• Public access is provided by a series of accessor and mutator functions. Clients don’t have
access to private functions or data.

Implementation:
• C Package using file scope for encapsulation. All private functions and global data are

qualified as static.
• C++ class using public, protected, and private keywords to implement public and protected

interfaces. Each class (or small, intimately related group of classes) should be given its own
Package.

• Each Package implementing an information cluster contains a manual page and maintenance
page which describe the logical model for the cluster and its chronological modification
history.

Information Cluster

Private functions

Public functions

Private Data

Chapter 1 - Packages 11

Header File: modname.h

#ifndef PKGNAME_H

#define PKGNAME_H

- manual page goes here
- maintenance page goes here
- declarations go here

#endif

Implementation File: modname.cpp

- prologue goes here

#include “pkgname.h”

- function definitions go here

#ifdef TEST_PKGNAME

void main() {

- test code goes here
}

#endif

Package StructurePackage Header File

Package Implementation File

These preprocessor directives
are essential. They prevent a
header file from being compiled
more than once, even though it
is included multiple times in
headers included in the cpp file
being compiled.

This preprocessor directive
allows a designer to compile
the Package alone, for test, but
to then remove the main test
stub for compilation as part of
a larger program.

Chapter 1 - Packages 12

What goes in a Package’s Files?

• Elements of header file:
– Manual page

• Prologue listing file name, platform, and author.

• Description of Package operation

• Illustration of its public interface

– Maintenance page

• Build process

• Maintenance history

– Declarations of the Package’s public classes and public global functions

– Definitions of inline functions, e.g., inline function bodies

– Function bodies of public template-based member functions and global
functions

– Definitions for public constant data items

– Includes of other header files with declarations of types used in this header
– no other files should be included.

Chapter 1 - Packages 13

What Goes in a Package’s Files?

• Elements of Implementation File

– Prologue, e.g., top part of the manual page, listing file name, platform, and
author. This should be a clone of the prologue inserted at the beginning of
the header’s manual page, except that the file name is changed.

– Includes of header files declaring types needed by the code in this
implementation – no other files should be included.

– Implementation of the Package’s global and member functions.

– Test stub – a main function which tests each function implemented in this
file. It is also used to illustrate how a client would use the Package and
what its outputs look like.

– The test stub must be enclosed by compilation guards which enable
compilation only when TEST_PKGNAME is defined.

Chapter 1 - Packages 14

Include Rules

• Syntax:
– Include system headers with angle brackets, e.g.,

#include <iostream>.

– Include local headers with quotes, e.g.,
#include “server1.h”

– Never, ever, include implementation (.cpp) files.
That makes managing build processes very difficult.

• Semantics:
– Always include header files at the lowest possible level:

• If a Package’s implementation depends on another Package,
include the other’s header file in the implementation file, not
the header.

• Do not include a header simply to pass it on to another file.

Chapter 1 - Packages 15

Modularity

• “In object oriented languages classes and objects form the logical structure of the system; we
place these abstractions in Packages to produce the system's physical architecture.”

Grady Booch, Object Oriented Design with Applications,
Benjamin/Cimmings, 1991

• Modularization consists of dividing a program into Packages which can be compiled
separately. C++ performs type checking across Package boundaries, using included header
file declarations.

• Packages in C and C++ are simply separately compiled files.
• We place Package interface declarations in header files.
• Package implementations are placed in separate files which include the header file at

compilation time via a preprocessor #include “pkg_name.h” directive.

Package ServerName

ServerName.h

ServerName.cpp

Package ClientName

ClientName.cpp

Header file
include

Chapter 1 - Packages 16

Incremental Development Model

Begins with requirements analysis, development of architecture and preliminary
design. Result should be a design concept and partitioning into Packages.

As soon as Packages are defined, one is selected that has no dependencies on
other Packages (at least one almost always exists). This Package’s development
proceeds by implementing one or two functions, adding tests of the new capabilities
to the test stub, and verifying nominal operation.

This process continues iteratively until Package is complete. Detailed unit test then
begins. Its goals are to exercise all paths and predicates in code to find all latent
errors, correct them, and verify.

Next a Package is selected which depends at most on the tested Package. It is
subjected to same process to develop a complete and verified Package. It is then
integrated with the first Package.

This continues until all the Packages have been integrated. Development completes
by carrying out product test to demonstrate that software meets all its contractual
obligations.

The outstanding virtue of this approach is that only a small amount of new code is
brought into a throughly tested baseline at each stage of development.

Chapter 1 - Packages 17

Incremental Development

Requirements Analysis

Preliminary Design

Detailed Design

Code and Unit Test

Detailed Design

Code and Unit Test

Detailed Design

Code and Unit Test

Integration

Integration

Phases
of

Development

Product Test
Time

Chapter 1 - Packages 18

Modular System

Logical Model:
collection of information clusters communicating through public interfaces.

Implementation:
• One executive client Package and a series of server Packages.
• One C or C++ server Package for each major program activity.
• The executive Package is the coordinator.
• Each server Package has:

– an implementation file containing a test stub, with conditional compilation
controls for stand-alone testing.

– a header file which announces the Package’s services to clients, e.g., the other
servers and/or the client Package.

Package ServerName

ServerName.h

ServerName.cpp

Package ClientName

ClientName.cpp

Header file
include

Chapter 1 - Packages 19

Limitations of Packages

• What’s wrong with modular decomposition?

– nothing, but this format alone is not very flexible

– Packages are defined statically (at compile time)

– new instances can not be created at run time

– this means that the flexibility afforded by run-time creation
of data does not extend to Packages which contain both
functions and data

Chapter 1 - Packages 20

Limitations of Packages

• Solution:

– classes support declaration of objects which can be defined
either statically or dynamically

– classes define both functions and data. An object, which is
simply an instance of a class, can be defined statically in
static memory, in local memory (on the stack), or
dynamically on the heap, just like any intrinsic data type

– a program can define as many objects as it needs up to the
amount that your computer memory can hold

– The classes you define will, of course, be packaged in
Packages.

Chapter 1 - Packages 21

Package Example

• The following slide shows the decomposition of a Catalogue
program.

– Catalog simply walks a directory sub-tree and collects an ordered
list of directories and their contents.

• When it completes, it holds the catalog information in an STL data
structure for any subsequent processing the designer might like to add.

– It nicely illustrates the use of classes and Packages for the logical
and physical packaging of the program.

– Besides being a nice illustration of a modular program, it also
provides a lot of functionality you will need in Project #1.

Chapter 1 - Packages 22

CATALOG Classes

FILEINFO PackageWILDCARDS Package

NAV Package

CATALOG Package

navig

userProc typedef map<string,fileSet> dirMap

typedef set<fileInfo,smallert> fileSet smaller

fileInfo

catalog::main()

Attribute:

 virtual void dirsProc(const string &dir);

 virtual void fileProc(const fileInfo &fi);

defProc

wildcards

program executive

navigate directory

subtree

filter filenames

with wildcards

find files in a directory,

extract file information

define ordering

for fileInfo objects

default processing of

files and directories

while navigating

application specific

file/dir processing

STL containers

store a set of directories and their associated files

Note that

catalog::main()

and navig

actually refer to

a userProc

object through

defProc

pointers

Chapter 1 - Packages 23

CATALOG Program Prologue, part of
the Manual Page

Description of
Package’s operation.

Manual
Page

Maintenance
Page

Description of how
to build Package.

Chapter 1 - Packages 24

End of Packages Presentation

