
CSE 384 Section 02 (Spring 2020) Midterm instructor’s solution

By default, Linux (Unix) shell commands receive input from the keyboard (stdin) and produce output to

user’s terminal as text (stdout). Linux (Unix) provides a feature to alter the input source of a command

as well as where its output and error messages are sent to.

a. Define and describe this feature with as much detail as you can?

b. Why is this feature so useful?

 (25 points - full credit will depend on the completeness of your answer)

Solution:

In Linux and other Unix-like systems provide a feature known as I/O redirection.

In Linux (Unix) everything is considered a file.

Command line programs send output to a file called standard output (stdout – connected to the

screen by default).

Command line programs usually send error and status messages to another file called standard

error (stderr – also connected to screen by default).

Command line programs receive input from yet another called file standard in (stdin –

connected to the keyboard by default)

1. stdin or file descriptor 0 – is file connected to the keyboard. Command line programs read input

from this file.

2. stdout or file descriptor 1 – is file connected to the display. Command programs send output to

this file

3. stderr or file descriptor 2 – is a file connected to the display. Programs send status/error

messages to this file.

I/O redirection - allows us to alter the input source of shell command as well as where its output

and error messages are sent to. This is made possible by the “<” and “>” redirection operators.

Specifically, redirection allows us to change where output (stdout/stderr) goes (e.g. the screen

or another file), and where input (stdin) comes from (e.g. the keyboard or another file).

Examples:

ls -l /usr/bin > ls-output.txt - redirects stdout to

file “ls-output.txt”

ls -l /bin/usr 2> ls-error.txt - redirects stderr to

file “ls-error.txt”

cat < lazy_dog.txt - redirect stdin to come from

text file “lazy_dog.txt”

b. The most useful and powerful thing you can do with I/O redirection is to connect multiple commands

together with what are called pipelines. With pipelines, the standard output of one command is fed

into the standard input of another. This is accomplished with the pipe (|) operator.

Example:

ls -l /usr/bin | less - redirect stdout of the ls program to

stdin of less program

References:

 https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=78

 https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=85

http://linuxcommand.org/lc3_lts0070.php

2. Assume the following files exist in your home directory: “foo.txt” and “bar.txt”

a. Write a Linux command to make “foo.txt” writable and executable for the owner, readable for
the group, and no permissions for everyone else. (12.5 points)

b. Nine characters of the file attributes (called the file mode), represent the read, write, and
execute permissions for the file's owner, the file's group owner, and everybody else (12.5
points)

Internally these file mode attributes are represented by 9 binary bits.

For example: the permissions attributes: “rwxrwxrwx” = 1111111112 = (binary) and 7778 (octal)

The permission attributes for “bar.txt” = r-xr--r-x

Please write the 9 binary permission bits (owner/group/world) for "bar.txt" - - - - - - - - -

Solution: (25 total points): a. 12.5, b. 12.5

a. Octal notation: chmod 340 foo.txt or Symbolic notation: chmod u+wx,g+r,o-rwx foo.txt

b. 1011001012

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=85
http://linuxcommand.org/lc3_lts0070.php

3. Use the Linux (Unix) find program and the word count program (wc) to write a command to find

and count all of the files in your home directory (and the sub directories) with size greater than

1k (1000 bytes). The output should be the count of the files found. (25 points).

 Solution: find ~ -type f -size +1k | wc -l

4. Complete the function: void AppendToFrontOfList(int list[], int valToInsert, int* len,

int max) shown below (25 points)

a. accepts an integer valToInsert. If space exists in the array list (max is the capacity)

then valToInsert is inserted to the front of the array (list[0]), and len is incremented

by 1. If the max number of elements is reached (i.e. capacity) then don’t insert,

instead print an error message on the standard error stream and return

b. what is the output of the program if run with the following command line:

gcc q4b.c && ./a.out 11

Solution:

