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What are Sockets?

• Sockets provide a common interface to the various protocols 
supported by networks.

• They allow you to establish  connections between machines to send 
and receive data.

• Sockets support the simultaneous connection of multiple clients to a 
single server machine.

• Background Resources On TCP/IP 
• https://www.guru99.com/tcp-ip-model.html

• https://www.guru99.com/tcp-3-way-handshake.html

• https://www.guru99.com/tcp-vs-udp-understanding-the-difference.html

• https://www.tutorialspoint.com/unix_sockets/what_is_socket.htm

https://www.guru99.com/tcp-ip-model.html
https://www.guru99.com/tcp-3-way-handshake.html
https://www.guru99.com/tcp-vs-udp-understanding-the-difference.html
https://www.tutorialspoint.com/unix_sockets/what_is_socket.htm


They’re Everywhere

•Virtually every network and internet communication 
method uses sockets, often in a way that is invisible 
to an application designer.

•Browser/server  
• ftp
•SOAP
•REST
•Network applications



TCP/IP based Sockets

• Connection-oriented means that two communicating 
machines must first connect.

• All data sent will be received in the same order as sent.
• Note that IP packets may arrive in a different order than 

that sent.

• This occurs because all packets in a communication do not 
necessarily travel the same route between sender and 
receiver.

• Streams mean that, as far as sockets are concerned, the only 
recognized structure is bytes of data.
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Client / Server Processing
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Non-Blocking Communication
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A Word of Caution

•With stream oriented sockets, send does not guarantee 
transfer of all bytes requested in a single call.

• That’s why send returns an int, the number of bytes 
actually send.

• It’s up to you to ensure that all the bytes are actually sent



Message Length

• Another vexing issue is that the receiver may not know how 
long a sent message is.

• so the receiver doesn’t know how many bytes to pull from 
the stream to compose a message.

• Often, the communication design will arrange to use 
message delimiters, fixed length messages, or message 
headers that carry the message length as a parameter. 
• Sometimes referred to as a “wire protocol”



Talk Protocol

• The hardest part of a client/server socket communication 
design is to control the active participant

• If single-threaded client and server both talk at the same time, 
their socket buffers will fill up and they both will block, e.g., 
deadlock.

• If they both listen at the same time, again there is deadlock.

• Often the best approach is to use separate send and receive 
threads



What we didn’t talk about

• udp protocol

• socket select(…) function

• non-blocking sockets



Creating Sockets

• Socket connections are based on:

• Domains – network connection or IPC pipe
• AF_INET for IPv4 protocol

• AF_INET6 for IPv6 protocol

• Type – stream, datagram, raw IP packets, …
• SOCK_STREAM → TCP packets

• SOCK_DGRAM → UDP packets

• Protocol – TCP, UDP, …
• 0 → default, e.g., TCP for SOCK_STREAM

• Example: 
int sockfd = socket(AF_INET,SOCK_STREAM,0);



Connecting Sockets

• Socket addresses

struct sockaddr_in {
sin_family // AF_INET
sin_address.s_addr // inet_addr(“127.0.0.1”); 
sin_port // htons(8000);

} addr;

• Bind server listener to port:

int err = bind(sock, (sockaddr_in*)&addr,sizeof(addr));

• Connect client to server:

int connect(sock, (sockaddr_in*)&addr,sizeof(addr))



TCP/IP socket

af = AF_INET
type = SOCK_STREAM
protocol = IPPROTO_IP

int socket(int af, int type, int protocol)

• Creates a socket object and returns handle to socket.



struct sockaddr_in local;
… define fields of local …
name = (sockaddr*)&local
namelen = sizeof(local)

int bind(
int s, 
const struct sockaddr *name, 
int namelen

)

• Bind listener socket to network card and port

Bind socket



Listen for incoming requests

int listen(int s, int backlog)

• backlog is the number of incoming connections queued (pending) for 
acceptance

• Puts socket in listening mode, waiting for requests for service from 
remote clients.



Accept Incoming Connection

SOCKET accept(
SOCKET s, 
struct sockaddr *addr, 
int *addrLen

)

• Blocking call, accepts a pending request for service and returns a 
socket bound to a new port for communication with new client.

• Usually server will spawn a new thread to manage the socket 
returned by accept, often using a thread pool.



recv

int recv(
int s, 
char *buff, 
int len, 
int flags

)

• Receive data in buff up to len bytes.

• Returns actual number of bytes read.  

• flags variable should normally be zero.



send

int send(
int s, 
char *buff, 
int len, 
int flags

)

• Send data in buff up to len bytes.  

• Returns actual number of bytes sent.  

• flags variable should normally be zero.



shutdown

int shutdown(int s, int how)

• how = SD_SEND or SD_RECEIVE or SD_BOTH

• Disables new sends, receives, or both, respectively.  Sends a FIN to server 
causing thread for this client to terminate (server will continue to listen for 
new clients).



Close socket

int close( s)

• Closes socket handle s.  Called on the client 
signals server that connection  



TCP Addresses – IP4

struct sockaddr_in {

short sin_family; 

unsigned short sin_port; 

struct in_addr sin_addr; 

char sin_zero[8]; 

} 



TCP/IP Address fields - IP4

• sin_family AF_INET

• sin_port at or above 1024

• sin_addr inet_addr(“127.0.0.1”);

• sin_zero padding

• Setting sin_addr.s_addr = INADDR_ANY allows a server 
application to listen for client activity on every network 
interface on a host computer.



connect

int connect(
int s, 
struct sockaddr *name, 
int namelen

)

• Connects client socket to a specific machine and port.



Special Functions

• htons – converts short from host to
network byte order

• htonl – converts long from  host to network
byte order

• ntohs – converts short from network to host
byte order

• ntohl – converts long from network to host
byte order



The End


