
Sockets

CSE 384

Spring 2020

Based on Dr. Fawcett’s Socket Presentation

https://ecs.syr.edu/faculty/fawcett/handouts/CSE687/pr
esentations/Win32Sockets.pdf

What are Sockets?

• Sockets provide a common interface to the various protocols
supported by networks.

• They allow you to establish connections between machines to send
and receive data.

• Sockets support the simultaneous connection of multiple clients to a
single server machine.

• Background Resources On TCP/IP
• https://www.guru99.com/tcp-ip-model.html

• https://www.guru99.com/tcp-3-way-handshake.html

• https://www.guru99.com/tcp-vs-udp-understanding-the-difference.html

• https://www.tutorialspoint.com/unix_sockets/what_is_socket.htm

https://www.guru99.com/tcp-ip-model.html
https://www.guru99.com/tcp-3-way-handshake.html
https://www.guru99.com/tcp-vs-udp-understanding-the-difference.html
https://www.tutorialspoint.com/unix_sockets/what_is_socket.htm

They’re Everywhere

•Virtually every network and internet communication
method uses sockets, often in a way that is invisible
to an application designer.

•Browser/server
• ftp
•SOAP
•REST
•Network applications

TCP/IP based Sockets

• Connection-oriented means that two communicating
machines must first connect.

• All data sent will be received in the same order as sent.
• Note that IP packets may arrive in a different order than

that sent.

• This occurs because all packets in a communication do not
necessarily travel the same route between sender and
receiver.

• Streams mean that, as far as sockets are concerned, the only
recognized structure is bytes of data.

Socket Logical Structure

Socket

recv buffer
recv buffer

Socket

recv buffer

bytes

bytes

Client / Server Processing

socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server Client

Non-Blocking Communication

Process #2

receiver

Process #1

sender

function sending
data to

Process #2

function receiving
data from
Process #1

interprocess
communication

FIFO queue

processing thread

receiver thread

Client/Server Configuration

Server Main Thread

Socket Receiver Thread

Server

Socket

use socket

data

Client

Client

Socket

listener

socket

C
re

a
te

T
h

re
a

d

data

port

listener

port

A Word of Caution

•With stream oriented sockets, send does not guarantee
transfer of all bytes requested in a single call.

• That’s why send returns an int, the number of bytes
actually send.

• It’s up to you to ensure that all the bytes are actually sent

Message Length

• Another vexing issue is that the receiver may not know how
long a sent message is.

• so the receiver doesn’t know how many bytes to pull from
the stream to compose a message.

• Often, the communication design will arrange to use
message delimiters, fixed length messages, or message
headers that carry the message length as a parameter.
• Sometimes referred to as a “wire protocol”

Talk Protocol

• The hardest part of a client/server socket communication
design is to control the active participant

• If single-threaded client and server both talk at the same time,
their socket buffers will fill up and they both will block, e.g.,
deadlock.

• If they both listen at the same time, again there is deadlock.

• Often the best approach is to use separate send and receive
threads

What we didn’t talk about

• udp protocol

• socket select(…) function

• non-blocking sockets

Creating Sockets

• Socket connections are based on:

• Domains – network connection or IPC pipe
• AF_INET for IPv4 protocol

• AF_INET6 for IPv6 protocol

• Type – stream, datagram, raw IP packets, …
• SOCK_STREAM → TCP packets

• SOCK_DGRAM → UDP packets

• Protocol – TCP, UDP, …
• 0 → default, e.g., TCP for SOCK_STREAM

• Example:
int sockfd = socket(AF_INET,SOCK_STREAM,0);

Connecting Sockets

• Socket addresses

struct sockaddr_in {
sin_family // AF_INET
sin_address.s_addr // inet_addr(“127.0.0.1”);
sin_port // htons(8000);

} addr;

• Bind server listener to port:

int err = bind(sock, (sockaddr_in*)&addr,sizeof(addr));

• Connect client to server:

int connect(sock, (sockaddr_in*)&addr,sizeof(addr))

TCP/IP socket

af = AF_INET
type = SOCK_STREAM
protocol = IPPROTO_IP

int socket(int af, int type, int protocol)

• Creates a socket object and returns handle to socket.

struct sockaddr_in local;
… define fields of local …
name = (sockaddr*)&local
namelen = sizeof(local)

int bind(
int s,
const struct sockaddr *name,
int namelen

)

• Bind listener socket to network card and port

Bind socket

Listen for incoming requests

int listen(int s, int backlog)

• backlog is the number of incoming connections queued (pending) for
acceptance

• Puts socket in listening mode, waiting for requests for service from
remote clients.

Accept Incoming Connection

SOCKET accept(
SOCKET s,
struct sockaddr *addr,
int *addrLen

)

• Blocking call, accepts a pending request for service and returns a
socket bound to a new port for communication with new client.

• Usually server will spawn a new thread to manage the socket
returned by accept, often using a thread pool.

recv

int recv(
int s,
char *buff,
int len,
int flags

)

• Receive data in buff up to len bytes.

• Returns actual number of bytes read.

• flags variable should normally be zero.

send

int send(
int s,
char *buff,
int len,
int flags

)

• Send data in buff up to len bytes.

• Returns actual number of bytes sent.

• flags variable should normally be zero.

shutdown

int shutdown(int s, int how)

• how = SD_SEND or SD_RECEIVE or SD_BOTH

• Disables new sends, receives, or both, respectively. Sends a FIN to server
causing thread for this client to terminate (server will continue to listen for
new clients).

Close socket

int close(s)

• Closes socket handle s. Called on the client
signals server that connection

TCP Addresses – IP4

struct sockaddr_in {

short sin_family;

unsigned short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

}

TCP/IP Address fields - IP4

• sin_family AF_INET

• sin_port at or above 1024

• sin_addr inet_addr(“127.0.0.1”);

• sin_zero padding

• Setting sin_addr.s_addr = INADDR_ANY allows a server
application to listen for client activity on every network
interface on a host computer.

connect

int connect(
int s,
struct sockaddr *name,
int namelen

)

• Connects client socket to a specific machine and port.

Special Functions

• htons – converts short from host to
network byte order

• htonl – converts long from host to network
byte order

• ntohs – converts short from network to host
byte order

• ntohl – converts long from network to host
byte order

The End

