Sockets

CSE 384
Spring 2020
Based on Dr. Fawcett’s Socket Presentation

https://ecs.syr.edu/faculty/fawcett/handouts/CSE687/pr
esentations/Win32Sockets.pdf

What are Sockets?

* Sockets provide a common interface to the various protocols
supported by networks.

* They allow you to establish connections between machines to send
and receive data.

» Sockets support the simultaneous connection of multiple clients to a
single server machine.

* Background Resources On TCP/IP
* https://www.guru99.com/tcp-ip-model.html
 https://www.guru99.com/tcp-3-way-handshake.html
* https://www.guru99.com/tcp-vs-udp-understanding-the-difference.html
* https://www.tutorialspoint.com/unix_sockets/what is socket.htm

https://www.guru99.com/tcp-ip-model.html
https://www.guru99.com/tcp-3-way-handshake.html
https://www.guru99.com/tcp-vs-udp-understanding-the-difference.html
https://www.tutorialspoint.com/unix_sockets/what_is_socket.htm

They’re Everywhere

*Virtually every network and internet communication
method uses sockets, often in a way that is invisible
to an application designer.

* Browser/server

e ftp

* SOAP

* REST

* Network applications

TCP/IP based Sockets

e Connection-oriented means that two communicating
machines must first connect.

e All data sent will be received in the same order as sent.

* Note that IP packets may arrive in a different order than
that sent.

* This occurs because all packets in a communication do not
necessarily travel the same route between sender and
receiver.

e Streams mean that, as far as sockets are concerned, the only
recognized structure is bytes of data.

Socket Logical Structure

recv buffer

-

Socket

bytes

bytes

>

Socket

recv buffer

Client / Server Processing

Server

socket()

bind()

listen()

accept()

recv()

Client

send()

close()

socket()

connect()

send()

recv()

close()

Non-Blocking Communication

Process #1

function sending
data to
Process #2

sender

receiver

interprocess
communication

receiver thread

Process #2

———»

processing thread

FIFO queue

function receiving
data from
Process #1

Client/Server Configuration

Client

Client
Socket

data

Server Main Thread

Socket Receiver Thread

port

listener
port

S
> soket L T[]

Create
Thread

listener
socket

use socket
data

A Word of Caution

* With stream oriented sockets, send does not guarantee
transfer of all bytes requested in a single call.

* That’s why send returns an int, the number of bytes
actually send.

* |t’s up to you to ensure that all the bytes are actually sent

Message Length

* Another vexing issue is that the receiver may not know how
long a sent message is.

* so the receiver doesn’t know how many bytes to pull from
the stream to compose a message.

* Often, the communication design will arrange to use
message delimiters, fixed length messages, or message
headers that carry the message length as a parameter.

* Sometimes referred to as a “wire protocol”

Talk Protocol

* The hardest part of a client/server socket communication
design is to control the active participant

* |If single-threaded client and server both talk at the same time,
their socket buffers will fill up and they both will block, e.g.,
deadlock.

* |If they both listen at the same time, again there is deadlock.

* Often the best approach is to use separate send and receive
threads

What we didn’t talk about

* udp protocol
 socket select(...) function
* non-blocking sockets

Creating Sockets

* Socket connections are based on:

Domains — network connection or IPC pipe
* AF_INET for IPv4 protocol
* AF_INET6 for IPv6 protocol

Type — stream, datagram, raw IP packets, ...
* SOCK_STREAM —-> TCP packets
* SOCK_DGRAM —> UDP packets

Protocol — TCP, UDP, ...
* 0 - default, e.g., TCP for SOCK_STREAM

Example:
int sockfd = socket(AF_INET,SOCK STREAM,Q);

Connecting Sockets

e Socket addresses

struct sockaddr_in {

sin_family // AF_INET
sin_address.s_addr // inet_addr(“127.0.0.1%);
sin_port // htons(8000);

} addr;

* Bind server listener to port:

int err = bind(sock, (sockaddr_ in*)&addr,sizeof(addr));

* Connect client to server:

int connect(sock, (sockaddr in*)&addr,sizeof(addr))

TCP/IP socket

af = AF_INET
type = SOCK_STREAM
protocol = IPPROTO IP

int socket(int af, int type, int protocol)

* Creates a socket object and returns handle to socket.

Bind socket

struct sockaddr_in local;
.. define fields of local ..
name = (sockaddr*)&local
namelen = sizeof(local)

int bind(
int s,
const struct sockaddr *name,
int namelen

)

* Bind listener socket to network card and port

Listen for incoming requests

int listen(int s, int backlog)

Accept Incoming Connection

SOCKET accept(

SOCKET s,
struct sockaddr *addr,
int *addrLen

)

* Blocking call, accepts a pending request for service and returns a
socket bound to a new port for communication with new client.

* Usually server will spawn a new thread to manage the socket
returned by accept, often using a thread pool.

recv

int recv(
int s,
char *buff,
int len,
int flags

send

int send(
int s,
char *buff,
int len,
int flags

)

shutdown

int shutdown(int s, int how)

* how = SD_SEND or SD_RECEIVE or SD BOTH

» Disables new sends, receives, or both, respectively. Sends a FIN to server
causing thread for this client to terminate (server will continue to listen for
new clients).

Close socket

int close(s)

TCP Addresses — IP4

struct sockaddr _in {

short sin_family;
unsignhed short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

TCP/IP Address fields - IP4

*sin_family AF _INET
*sin_port at or above 1024
*sin_addr inet_addr(“127.0.0.17);
*sin_zero padding

* Setting sin_addr.s_addr = INADDR_ANY allows a server
application to listen for client activity on every network
interface on a host computer.

connect

int connect(
int s,
struct sockaddr *name,
int namelen

)

* Connects client socket to a specific machine and port.

Special Functions

 htons — converts short from host to
network byte order

* htonl — converts long from host to network
byte order

* ntohs — converts short from network to host
byte order

* ntohl — converts long from network to host
byte order

The End

