
Lecture 4: CSE 384
(System and Network

Programming)
The Linux Command Line, Fifth Internet Edition

Chapters 6-10

Overview

• I/O Redirection
• STDIN, STDOUT, STDERR

• Concept Overview

• Examples

• Disposing Output
• /dev/null

• Pipelines
• Concept Overview

• Examples

I/O Redirection: based on page 54 of the
online version the Linux CommandLine
• redirect the input and output of commands to and from files

• connect multiple commands together into powerful command
pipelines
• In keeping with the Unix (Linux) model, everything is a file….

• programs (such as ls) send output to a file called standard output: called stdout

• Status (error) messages to another file called standard error: stderr
• by default, both stdout/stderr are linked to the screen and not saved into a disk file.

• Many programs take input from yet another file: stdin (called standard in)
• By default stdin is connected to the keyboard

• Redirection allows us to change where output (stdout/stderr) goes (e.g. the
screen), and where input (stdin) comes from (e.g. the keyboard)

stdin, stdout, stderr

https://github.com/kennyyu/bootcamp-unix/wiki/stdin,-stdout,-stderr,-and-pipes

• In python: “print”
• In Java: “System.out.print”
• In C: “printf’
• fprintf(stderr)
• In C++ “std::cout”
• std::cerr

0 1

2

STDIN, STDOUT, and STDERR are files…

• Operating systems (under the hood), are often a tables with indices
that point to resources.
• Files (and other resources) are often referenced using descriptors (integer

numbers) that serve as a handle to the resources.

• STDIN == file descriptor 0

• STDOUT = file descriptor 1

• STDERR = file descriptor 2

Source: The C Programming Language 2nd Edition , page 176

What are files anyway?
Original UNIX “FILE” concept
implementation by Ritchie

Examples

Examples
• Redirect STDOUT

• ls -l /usr/bin > ls-output.txt
• ls -l /usr/bin 1> ls-output.txt

• Redirect STDERR
• [me@linuxbox ~]$ ls -l /bin/usr > ls-output.txt

• What happened?
• Zero length! The destination file is always rewritten from the beginning.

• [me@linuxbox ~]$ ls -l /bin/usr 2> ls-error.txt

• [me@linuxbox ~]$ > ls-output.txt
• using the redirection operator with no command preceding it will truncate

an ex-isting file or create a new, empty file.

• [me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt

• [me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
• append redirected output to a file instead of overwriting the file

Examples
• Redirecting Standard Output and Standard Error to One File

• [me@linuxbox ~]$ ls -l /bin/usr > ls-output.txt 2>&1

• Using this method, we perform two redirections.

• First we redirect standard output to the file ls-output.txt

• then we redirect file descriptor 2 (standard error) to file descriptor 1
(standard output) using the notation 2>&1.

• [me@linuxbox ~]$ ls -l /bin/usr &> ls-output.txt

• Streamlined notation &> in (modern BASH implementations) to redirect
both standard output and standard error to the file

• append the standard output and standard error streams to a single file

• [me@linuxbox ~]$ ls -l /bin/usr &>> ls-output.txt

Disposing Output (/dev/null) (page 58)

• Sometimes its appropriate to disregard output from a command, we
just want to throw it away.
• error and status messages.

• [me@linuxbox ~]$ ls -l /bin/usr 2> /dev/null

• Often called the bit bucket
• Old Unix concept and because of its universality

• The old Unix joke: If I want to ignore this lecture, you might say that you’re
sending everything I say to /dev/null

Redirecting STDIN (page 59)
• Consider the Unix cat program – Concatenate Files

• The cat command reads one or more files and copies them to standard
output (note wildcard expand is sorted order)

• Now run cat with no file arguments (assumes stdin)

• [me@linuxbox ~]$ cat

• the quick brown fox jumped over the lazy dog.

• Type Ctrl-d (i.e., hold down the Ctrl key and press “d”)

• to tell cat that it has reached end of file (EOF) on stdin

Redirecting STDIN

• Now run cat with no arguments again….

• [me@linuxbox ~]$ cat

• Type: the quick brown fox jumped over the lazy dog.

• Type Ctrl-d (signal EOF)

• Using the < redirection operator

the source of stdin changed from the keyboard to the file lazy_dog.txt. We
see that the result is the same as passing a single file

Pipelines

• read data from stdin and send to stdout is utilized by a shell feature
called pipelines.

• Using the pipe operator | (vertical bar)
• standard output of one command can be piped into the standard input of

another.

command1|command2

[me@linuxbox ~]$ ls -l /usr/bin | less

Pipe (|) Versus Redirection (>) - page 62
• The Difference Between > and |

• the redirection operator connects a command with a file

• command1 > file1 -> echo “hello” > temp

• the pipeline operator connects the output of one command with the input of
a second command

• command1 | command2 -> ls -l /usr/bin | less

• Be carful when you are learning about pipelines

• What does command1 > command2

• Answer: sometimes something really bad.

• # cd /usr/bin

• # ls > less

• Notice the # indicates root, (wiped out the less program)

Pipeline (concept)

Source: https://github.com/kennyyu/bootcamp-unix/wiki/stdin,-stdout,-stderr,-and-pipes

Tee command

ls

[me@linuxbox ~]$ ls /usr/bin | tee ls.txt | grep zip

stdoutstdin
tee

stdin stdout
grep

stdout

Console

stderrstderr

Console

Filters - piping command together

• https://mwcorley79.github.io/MikeCorley/presentations/TLCL-
19.01.pdf#page=86 (The Linux Command Line, William Shotts)
• sort (page 62) --

• uniq (unique) -- removes duplicates

• wc (word count)

• grep (page 63)

• head and tail (page 64)

• tee

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=86

Chapter 7: The Shell – Expansion and
substitution

• Expansion
• arithmetic
• Brace
• Parameter (shell variables)

• Substitution

• Quoting

• https://mwcorley79.github.io/MikeCorley/presentations/TLCL-
19.01.pdf#page=86

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=86
https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=86
https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=86

Chapter 8: Keyboard shortcuts

• https://mwcorley79.github.io/MikeCorley/presentations/TLCL-
19.01.pdf#page=86

• Command history

• Completion

• script

Chapter 9: Permissions

• https://mwcorley79.github.io/MikeCorley/presentations/TLCL-
19.01.pdf#page=86

• id – Display user identity

• chmod – Change a file's mode

• umask – Set the default file permissions

• su – Run a shell as another user

• sudo – Execute a command as another user

• chown – Change a file's owner Permissions

• chgrp – Change a file's group ownership

• passwd – Change a user's pass

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=86

umask

• controls the default permissions given to a file when it is created.

• octal notation to express a mask of bits to be removed from a file's
mode attributes.

chmod examples

• chmod g+rx a.out
• - give the group read + execute permissions

• chmod g+rwx,o-x a.out
• - give the group read + write + execute permissions, take way execute for the

world

• chmod u+rwx,g+rx,o-rwx a.out == chmod 750
• Give the owner full access (rwx), the group (rx), take away all access to the

world

Special permissions: setuid, setgid, sticky bit
• setuid bit (octal 4000).

• When applied to an executable file,it sets the effective user ID from that
of the real user (the user actually running the program) to that of the
program's owner.
• chmod u+s program

• setgid bit (octal 2000), which, like the setuidbit, changes the effective
group ID from the real group ID

• sticky bit (octal 1000)
• prevents users from deleting or renaming files unless the user is either the

owner of the directory, the owner of the file, or the superuser
• often used to control access to a shared directory, such as /tmp.

chmod examples

chown

SU and SUDO

