Lecture 4: CSE 384
(System and Network
Programming)

The Linux Command Line, Fifth Internet Edition
Chapters 6-10

Overview

* |/O Redirection
e STDIN, STDOUT, STDERR
* Concept Overview
* Examples

* Disposing Output
o /dev/null

* Pipelines
* Concept Overview
* Examples

/O Redirection: based on page 54 of the
online version the Linux CommandLine

 redirect the input and output of commands to and from files

e connect multiple commands together into powerful command

pipelines
* In keeping with the Unix (Linux) model, everything is a file....
e programs (such as Is) send output to a file called standard output: called stdout

 Status (error) messages to another file called standard error: stderr
* by default, both stdout/stderr are linked to the screen and not saved into a disk file.

* Many programs take input from yet another file: stdin (called standard in)
* By default stdin is connected to the keyboard
 Redirection allows us to change where output (stdout/stderr) goes (e.g. the
screen), and where input (stdin) comes from (e.g. the keyboard)

stdin, stdout, stderr

* In python: “print”

echo foo .
* InJava: “System.out.print”
OUTPUT. * InC: “printf’
foo .
0 . fprintf(stderr)
. “foo” 1 e In C++ “std::cout”

stdin - echo » stdout . std::cerr

(keyboard) l (console))
stderr °
(console)

https://github.com/kennyyu/bootcamp-unix/wiki/stdin,-stdout,-stderr,-and-pipes

mwcorley@mwcorley-VirtualBox: $ echo "foo"

foo

STDIN, STDOUT, and STDERR are files...

* Operating systems (under the hood), are often a tables with indices
that point to resources.

* Files (and other resources) are often referenced using descriptors (integer
numbers) that serve as a handle to the resources.

e STDIN == file descriptor O
e STDOUT = file descriptor 1
* STDERR = file descriptor 2

#define NULL 0
tdefine EOF (=11}
#tdefine BUFSIE 1024

#define OPEN MAX 20 /* max #files open at once */

typedef struct iobuf {

int cnt; /* characters left */
char *ptr; /* next character position */
char *base; /* location of buffer */
int flag:; /* mode of file access */
int f£d; /* file descriptor */
} FILE:;

extern FILE iob[OPEN MARX];
#define stdin (& iob[01)
tdefine stdout (& iob[1])
#define stderr (& iob[2]1)

enum flags

{
_READ = 01, /* file open for reading */
WRITE = 02, /* file open for writing */
T UNBUF = 04, /* file is unbuffered */
 EOF = 010, J* EOF has occurred on this file */
:ERR = 020 f* error cccurred on this file */

};

int fillbuf(FILE *):
int flushbuf (int, FILE ¥);

#define feof (p) ((p)-—>flag & EOF) != 0)
#define ferror (p) ((p)->flag & ERR)} != 0)
#define fileno (p) { (p)—>£4)

#define getc(p) (—— (p) —>cnt >= 0 \

? (unsigned char) *(p)->ptr++ : fillbuf(p))
tdefine putc(x,p) (——(p)->cnt >= 0 \

? *(p)->ptr++ = (x) : flushbuf ((x),p))
#define getchar() getc (stdin)

#define putcher(x) putc((x), stdout)

.

What are files anyway?
Original UNIX “FILE” concept
implementation by Ritchie

Source: The C Programming Language 2" Edition , page 176

Examples

mwcorley@mwcorley-VirtualBox: $ ls -1 > Lls-output
mwcorley@mwcorley-VirtualBox: $ cat ls-output
total 8

drwxrwxr-x 6 mwcorley mwcorley 4096 Jan 22 18:20 code examples
-rw-rw-r-- 1 mwcorley mwcorley @ Jan 24 14:29 ls-output
-rw-rw-r-- 1 mwcorley mwcorley @ Jan 24 14:28 ls-output.txt

mwcorley@mwcorley-VirtualBox: $ ls -1 /bin/usr > ls-output.txt
ls: cannot access '/bin/usr': No such file or directory
mwcorley@mwcorley-VirtualBox: $ cat ls-output

cat: ls-output: No such file or directory

mwcorley@mwcorley-VirtualBox: $ ls -1 /bin/usr 2> ls-output.txt
mwcorley@mwcorley-VirtualBox: $ cat ls-output.txt

ls: cannot access '/bin/usr': No such file or directory
mwcorley@mwcorley-VirtualBox: s i

Examples

e Redirect STDOUT

* Is -1 /usr/bin > Is-output.txt
* Is - /usr/bin 1> Is-output.txt

* Redirect STDERR
* [me®@linuxbox ~]S Is -/ /bin/usr > Is-output.txt
 What happened?
e Zero length! The destination file is always rewritten from the beginning.
* [me@linuxbox ~]S Is -1 /bin/usr 2> Is-error.txt

e [me@linuxbox ~]S > Is-output.txt

* using the redirection operator with no command preceding it will truncate
an ex-isting file or create a new, empty file.

o [me@linuxbox ~]S Is -1 /usr/bin >> Is-output.txt

e [me@linuxbox ~]S Is -1 /usr/bin >> Is-output.txt
* append redirected output to a file instead of overwriting the file

Examples

e Redirecting Standard Output and Standard Error to One File
* [me®@linuxbox ~]S Is -l /bin/usr > Is-output.txt 2>&1
* Using this method, we perform two redirections.
* First we redirect standard output to the file Is-output.txt

* then we redirect file descriptor 2 (standard error) to file descriptor 1
(standard output) using the notation 2>&1.

e [me®@linuxbox ~]S Is -l /bin/usr &> Is-output.txt

e Streamlined notation &> in (modern BASH implementations) to redirect
both standard output and standard error to the file

e append the standard output and standard error streams to a single file
* [me®@linuxbox ~]S Is -1 /bin/usr &>> Is-output.txt

Disposing Output (/dev/null) (page 58)

* Sometimes its appropriate to disregard output from a command, we
just want to throw it away.

* error and status messages.
e [me@linuxbox ~]S Is -l /bin/usr 2> /dev/null

e Often called the bit bucket

* Old Unix concept and because of its universality

* The old Unix joke: If | want to ignore this lecture, you might say that you're
sending everything | say to /dev/null

Redirecting STDIN (page 59)

* Consider the Unix cat program — Concatenate Files

* The cat command reads one or more files and copies them to standard
output (note wildcard expand is sorted order)
mwcorley@mwcorley-VirtualBox: $ echo "Mike" > filel

mwcorley@mwcorley-VirtualBox: $ echo "Corley" > file2
mwcorley@mwcorley-VirtualBox: $ cat file* > file3

mwcorley@mwcorley-VirtualBox: $ cat file3
Mike
Corley

 Now run cat with no file arguments (assumes stdin)
* [me@linuxbox ~]S cat
 the quick brown fox jumped over the lazy dog.
e Type Ctrl-d (i.e., hold down the Ctrl key and press “d”)
* to tell cat that it has reached end of file (EOF) on stdin

Redirecting STDIN

* Now run cat with no arguments again....
* [me@linuxbox ~]S cat
* Type: the quick brown fox jumped over the lazy dog.
* Type Ctrl-d (signal EOF)

mwcorley@mwcorley-VirtualBox: $ cat > lazy dog.txt
the quick fox

mwcorley@mwcorley-VirtualBox: $ cat lazy dog.txt
the quick fox

mwcorley@mwcorley-VirtualBox: $ cat < lazy dog.txt
the quick fox

mwcorley@mwcorley-VirtualBox: $

* Using the < redirection operator

the source of stdin changed from the keyboard to the file lazy_dog.txt. We
see that the result is the same as passing a single file

Pipelines

* read data from stdin and send to stdout is utilized by a shell feature
called pipelines.

* Using the pipe operator | (vertical bar)

e standard output of one command can be piped into the standard input of
another.

commandl | command?

[me@linuxbox ~]S Is -l /usr/bin | less

Pipe (|) Versus Redirection (>) - page 62

* The Difference Between > and |
* the redirection operator connects a command with a file
e command1 > filel -> echo “hello” > temp

* the pipeline operator connects the output of one command with the input of
a second command

e commandl | command2 ->Is -l /usr/bin | less
* Be carful when you are learning about pipelines
 What does command1 > command?2
* Answer: sometimes something really bad.
* #cd /usr/bin
o #I|s>less
* Notice the # indicates root, (wiped out the less program)

Pipeline (concept)

echo “foo bar baz” | wc -w

OUTPUT: 3
“foo bar baz” 3
> echo > > WC >
stdin stdout stdin stdout
(keyboard) (console)
stderr stderr
(console) (console)

Source: https://github.com/kennyyu/bootcamp-unix/wiki/stdin,-stdout,-stderr,-and-pipes

Tee command

[me@linuxbox ~]1$ 1ls /usr/bin | tee ls.txt | grep zip

stdout

stdin stdout stdin

stderr stdout

Console Console

Filters - piping command together

* https://mwcorley79.github.io/MikeCorley/presentations/TLCL-
19.01.pdf#fpage=86 (The Linux Command Line, William Shotts)
 sort (page 62) --
* uniqg (unique) -- removes duplicates
* wc (word count)
* grep (page 63)
* head and tail (page 64)
* tee

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=86

Chapter 7: The Shell — Expansion and
substitution

* Expansion
e arithmetic
* Brace
e Parameter (shell variables)

 Substitution
* Quoting

* https://mwcorley79.github.io/MikeCorley/presentations/TLCL-
19.01.pdf#page=86

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=86
https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=86
https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=86

Chapter 8: Keyboard shortcuts

* https://mwecorley79.github.io/MikeCorley/presentations/TLCL-
19.01.pdf#page=86

e Command history
 Completion
* script

Chapter 9: Permissions

* https://mwcorley79.github.io/MikeCorley/presentations/TLCL-
19.01.pdf#page=86

* id — Display user identity

* chmod — Change a file's mode

e umask — Set the default file permissions

* su—Run a shell as another user

e sudo — Execute a command as another user
* chown — Change a file's owner Permissions
* chgrp — Change a file's group ownership

e passwd — Change a user's pass

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=86

umask

 controls the default permissions given to a file when it is created.

e octal notation to express a mask of bits to be removed from a file's
mode attributes.

chmod examples

 chmod g+rx a.out
e - give the group read + execute permissions

e chmod g+rwx,0-x a.out
e - give the group read + write + execute permissions, take way execute for the
world
 chmod u+rwx,g+rx,o-rwx a.out == chmod 750

* Give the owner full access (rwx), the group (rx), take away all access to the
world

Special permissions: setuid, setgid, sticky bit

* setuid bit (octal 4000).

* When applied to an executable file,it sets the effective user ID from that
of the real user (the user actually running the program) to that of the
program's owner.

e chmod u+s program
mwcorley@mwcorley-VirtualBox:~/Desktop/code examples$ 1s -1 /usr/bin/passwd

-rwsr-xr-x 1 root root 59640 Mar 22 2019 /usr/bin/passwd

* setgid bit (octal 2000), which, like the setuidbit, changes the effective
group ID from the real group ID

e sticky bit (octal 1000)

e prevents users from deleting or renaming files unless the user is either the
owner of the directory, the owner of the file, or the superuser

 often used to control access to a shared directory, such as /tmp.

chmod examples

chown

SU and SUDO

