
CSE 384 (Lecture 7): Common
Unix Tools and Shell Scripting

Spring 2020

Overview

• Editors

• Commonly Used Tools
• Editors

• vi
• Grep (regex)
• Locate
• Find
• Sed
• Awk
• Tar
• Gzip

Editors - create/edit text files

• Vi / Vim originally written in 1976 by Bill Joy, a University of California
at Berkley student who later went on to co-found Sun Microsystems

• Emacs originally written in 1976 by Carl Mikkelsen, David A. Moon and
Guy L. Steele Jr has over 10,000 built-in commands and its user
interface allows the user to combine these commands into macros to
automate work

• ex - EXtended, is a line editor for Unix systems

• GNU nano is a text editor for Unix-like computing systems or operating
environments using a command line interface.

• gedit is the default text editor of the GNOME desktop environment and
part of the GNOME Core Applications.

https://en.wikipedia.org/wiki/Vi
https://en.wikipedia.org/wiki/Bill_Joy
https://en.wikipedia.org/wiki/Emacs
https://en.wikipedia.org/w/index.php?title=Carl_Mikkelsen&action=edit&redlink=1
https://en.wikipedia.org/wiki/David_A._Moon
https://en.wikipedia.org/wiki/Guy_L._Steele_Jr.
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Macro_(computer_science)
https://en.wikipedia.org/wiki/Ex_(text_editor)
https://en.wikipedia.org/wiki/Line_editor
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/GNU_nano
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Command_line_interface
https://en.wikipedia.org/wiki/Gedit
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/GNOME
https://en.wikipedia.org/wiki/Desktop_environment
https://en.wikipedia.org/wiki/GNOME_Core_Applications

VI/VIM - screen-oriented text editor

• vi was originally written in 1976 by Bill Joy, a University of California at
Berkley student who later went on to co-found Sun Microsystems
• lightweight and fast, and always available.
• Important (these days) if the system has no graphical interface
• POSIX compatibility on Unix systems, requires that vi be present

• $ vi file.txt
• i, o, a, etc (insert mode), esc (command mode) ~, cw, dw,

dNw, dd,
• Ex – line editor: $:%s/expression/replacement
• See vi Cheat sheet

• http://www.atmos.albany.edu/daes/atmclasses/atm350/vi_che
at_sheet.pdf

Class Text: The Linux Command Line (Chapter 12)

http://www.atmos.albany.edu/daes/atmclasses/atm350/vi_cheat_sheet.pdf
https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=165

Commonly used tools…

• grep – search for patterns in text files

• find – search for files in a directory hierarchy

• locate – find files by name

• AWK – (text processing language) pattern scanning and processing

• sed - stream editor for filtering and transforming text

• tar – (tape) archiving utility

• gzip – (gnu) zip – compress and expand files

Sample test file for examples: geekfile.txt

Grep (G/re/p) - “global regular expression print”

• searches text files for the occurrence text matching a specified regular
expression and outputs any line containing a match to standard
output
• Regular expression

• special text string for describing a search pattern. You can think of regular
expressions as wildcards on steroids.

• Resources / Examples

• Grep

• https://www.geeksforgeeks.org/grep-command-in-unixlinux/

• Regex

• https://www.regular-expressions.info/

• See Class Text: The Linux Command Line Chapter 19

https://www.geeksforgeeks.org/grep-command-in-unixlinux/
https://www.regular-expressions.info/
https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=275

Grep Examples: Class Text: The Linux Command Line Chapter 19

$ grep -i "UNix" geekfile.txt
• Search and match lines “UNix” string , disregard case

$ grep -ic "UNix" geekfile.txt
• Like previous, but count the match occurrences

$ grep -i "^UNix" geekfile.txt
• Search and match lines beginning with string “UNix”, disregard case

$ grep -i '^Unix.*os.$' geekfile.txt
• Search and match lines beginning with string “UNix”, followed by any number

of characters, and ending with string “os.”

$ grep '[0-9]\{3\}-\{0,1\}[0-9]\{2\}-\{0,1\}[0-9]\{4\}' geekfile.txt
• Match social security numbers -- assume search applications for PII

(personally identifiable information)

$ grep -H '[0-9]\{3\}-\{0,1\}[0-9]\{2\}-\{0,1\}[0-9]\{4\}' geekfile.txt

$ grep -l '[0-9]\{3\}-\{0,1\}[0-9]\{2\}-\{0,1\}[0-9]\{4\}' f*.txt

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=275

Common tools for locating files

• Locate
• Find files by name

• Find
• Search for files in a directory hierarchy

• xargs
• Build and execute command lines from standard input

Chapter 17: Searching for Files

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=241

Locate - find files by name

• performs a rapid database search of pathnames, and outputs every
name that matches a given substring

• Example
• find all the programs with names that begin with zip

• locate bin/zip

• locate zip

• locate zip | grep zip$

Chapter 17: Searching for Files (Locate)

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=241

Find - search for files in a directory hierarchy

• searches a given directory (and its subdirectories) for files based on a variety of
attributes
• Uses the notion of tests and actions

• Examples
$ find ~ | wc -l
$ find ~ -type d | wc -l
$ find ~ -type f -name "*.c" -size +1k
$ find . -type f -name 'f*' -exec ls -l '{}' ';'
$ find . -type f -name 'f*' -ok ls -l '{}' ';'
$ find . -type f -name 'f*' -exec grep -H '[0-9]\{3\}-\{1\}[0-9]\{2\}-\{1\}[0-9]\{4\}' '{}' ';'
$ find . -type f -name 'f*' | xargs grep '[0-9]\{3\}-\{1\}[0-9]\{2\}-\{1\}[0-9]\{4\}'

Chapter 17: Searching for Files

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=241

Xargs

• Accepts input from standard in-put and converts it into an argument list for a
specified command
• Example:

$ echo 'one two three' | xargs mkdir

$ echo 'one two three' | xargs rmdir

$ find ~ -type f -name 'f*' -print | xargs ls -l

$ time find ~ -type f -name 'f*' -exec grep '[0-9]\{3\}-\{1\}[0-9]\{2\}-\{1\}[0-9]\{4\}' '{}' ';'

$ time find ~ -type f -name 'f*' | xargs grep '[0-9]\{3\}-\{1\}[0-9]\{2\}-\{1\}[0-9]\{4\}'

Sed – Stream editor

• text editing on a stream of text, either a set of specified files or standard
input.

• Use a single editing command (on the command line) or the name of a
script file containing multiple commands
• performs commands upon each line in the stream of text.

• sed 's/Unix/windows/gI' geekfile.txt

• cat geekfile.txt | sed '4s/unix/windows/gI’

• sed 's/[Ll]inux/Unix/g' geekfile.txt > output.txt

• https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=325

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=325

AWK - interpreted programming language

• AWK is an interpreted programming language, specially designed for
text processing. Named after the authors (Alfred Aho, Peter
Weinberger, and Brian Kernighan).

• Typical uses

• Producing formatted text reports,

• Performing arithmetic operations,

• Performing string operations, and many more.

Tutorial: https://www.tutorialspoint.com/awk/awk_overview.htm

https://www.tutorialspoint.com/awk/awk_overview.htm

Wait! What is a Shell again ?

• The shell is a program that takes keyboard commands and passes
them to the operating system to carry out.
• Source: The Linux Command Line, Fifth edition, page 2

• The shell is the command interpreter in an operating system such as
Unix or GNU/Linux, it is a program that executes other programs.
• Source: https://www.tecmint.com/different-types-of-linux-shells/

• The shell is both an interactive command language and a scripting
language, and is used by the operating system to control the
execution of the system using shell scripts
• Source: https://en.wikipedia.org/wiki/Shell_script

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=26
https://www.tecmint.com/different-types-of-linux-shells/
https://en.wikipedia.org/wiki/Command_language
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Shell_script
https://en.wikipedia.org/wiki/Shell_script

Background
• Bourne Shell (sh): Steven Bourne – 1977

• AT&T Bell Labs for V7 UNIX, remains a useful shell today

• introduced control flows, loops, and variables into scripts, providing a more
functional language to interact with the operating system (both interactively
and noninteractively).

• C Shell (csh): Bill Joy - 1978
• A graduate student at the University of California, Berkeley, developed for

Berkeley Software Distribution (BSD) UNIX systems

• A key design objectives for the C shell was to create a scripting language that
looked similar to the C language.

• Introduced command history

This material found at: https://developer.ibm.com/tutorials/l-linux-shells/

https://developer.ibm.com/tutorials/l-linux-shells/

Background
• Tenex C shell (tcsh): Ken Greer, 1983

• Carnegie Mellon University
• backward-compatible with csh, but improved its overall interactive features.

• Korn shell (ksh): David Korn, 1983
• used as a scripting language in addition to being backward-compatible with

the original Bourne shell.

• Bourne-Again Shell (BASH): Brian Fox, 1989
• an open source GNU project intended to replace the Bourne shell
• A superset of the Bourne shell
• incorporated features from the Korn and C shells
• One of the most widely used shells

This material found at: https://developer.ibm.com/tutorials/l-linux-shells/

https://developer.ibm.com/tutorials/l-linux-shells/

Writing Shell Scripts (Overview)

Writing Shell Scripts

• We’ve covered the first 9+ chapters of the Linux Command Line
• We’ve discussed many of the basic commands for navigating, and managing a

Linux system.

• foundational ideas including, Files, I/O redirection and pipelines, a

• handful of the important tools to accomplish useful work.

• However, using the shell by supplying command lines (one a time).
Granted this is useful,

• By joining our tools together into programs of our

• The shell can carry out complex sequences of tasks with the
command line alone, but shell scripts unlock the power of the Linux
system.

http://linuxcommand.org/lc3_writing_shell_scripts.php#contents

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=387
http://linuxcommand.org/lc3_writing_shell_scripts.php#contents

First BASH script: first.sh

Setting up your environment

• Consider putting your scripts in local bin folder: ~/bin and adding
that to your PATH variable: export PATH=~/bin:"$PATH“
• Update the interactive shell by sourcing it. $. .bashrc
• Cause the shell to re-read the .bashrc

• .bashrc is shell script that runs when BASH is started
• initializes the interactive shell session

• A second, and better option to update the PATH variable
from .bashrc (or the .profile)

• If your don’t set your PATH, then no problem, you’ll just
have to proceed every script/exe with “./ “ as in
./script_name.sh

Shebang (#!) - or the “bang” line

• The #! syntax is used in scripts to indicate an interpreter for execution
under UNIX / Linux operating systems.

• Most script starts with the following line: #!/bin/interpreter
• absolute path to the interpreter need to run the program

• For BASH scripts

• #!/bin/bash

• Python

• #!/usr/bin/python

https://bash.cyberciti.biz/guide/Shebang

https://bash.cyberciti.biz/guide/Shebang

How does #! Work?

• #! - human readable magic number consisting of the byte string
0x23 0x21
• The kernel uses the exec() family of functions (system calls) to determine

whether the executable file to be executed is a script (interpreted) or a
binary
• Need to set the execute bit for exec() to work

• exec() replaces a process image with a new process image: consider a shell:
fork() -> new process -> exec(new process, process image) -> child process

Exec() reads the magic number of executable file, if the “#!” is
present the executable present after #! Is run instead

Run: xxd (hexdump) somescript, man exec, man fork

First script with command line argument

Special variables to be aware of… (demoSpecialVars1.sh)
• $0 - The name of the Bash script.

• $1, $2, $3,… - user (command line) arguments supplied to the Bash script.

• $# - number arguments supplied to the Bash script.

• $@ - All the arguments supplied to the Bash script.
• When quoted expand to separate strings

• $* - All the arguments supplied to the Bash script
• When quoted expand to single string

• $? - The exit status of the most recently run process.

• $$ - The process ID of the current script.

• $USER - The username of the user running the script.

• $HOSTNAME - The hostname of the machine the script is running on.

• $SECONDS - The number of seconds since the script was started.

• $RANDOM - Returns a different random number.

• $LINENO - Returns the current line number in the Bash script.

Source: https://ryanstutorials.net/bash-scripting-tutorial/bash-variables.php
https://www.bogotobogo.com/Linux/linux_shell_programming_tutorial3_special_variables.php

https://ryanstutorials.net/bash-scripting-tutorial/bash-variables.php
https://www.bogotobogo.com/Linux/linux_shell_programming_tutorial3_special_variables.php

BASH If Statement: (demoIf.sh)

if [<some test>]
then
<commands>
fi

Tests
• brackets ([]) reference to the command test.

• All of the operators that test supports can be used in the if statement
• Sets exit status of 0 (true) or 1 (false) depending on

the evaluation of EXPR.
• Run man test to see all of the possible operators

• http://linuxcommand.org/lc3_man_pages/testh.html

Source: https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php

http://linuxcommand.org/lc3_man_pages/testh.html
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php

Bash Functions: (demoFunctionsLoops.sh)

• functions don’t allow return a values
• return value is the exit status of the last statement executed in the function,

• 0 for success

• non-zero decimal number in the 1 - 255 range for failure

• return status can be specified by using the return keyword

• assigned to the variable $?.

• return statement terminates the function. You can think of it as the
function’s exit status.

• See example
• Source: https://linuxize.com/post/bash-functions/

• Source https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php

https://linuxize.com/post/bash-functions/
https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php

BASH arrays: (demoArrays.sh)

• There a number of ways to declare an use arrays, this is one way..
distro=("redhat" "debian" "gentoo" "ubuntu" "mint")

• Source: https://www.cyberciti.biz/faq/finding-bash-shell-array-
length-elements/

https://www.cyberciti.biz/faq/finding-bash-shell-array-length-elements/

Examples: examples.tar.gz
• readExample.sh

• demo BASH keyboard input and output

• demoSpecialVars.sh
• Demonstrate $@,

• demoFunctionsLoops.sh
• Demo BASH loops, functions and return values

• demoArrays.sh
• A quick little array demo

• demoMenu.sh
• Demonstrate to create menu prompt with case statement

• demoCountWords.sh
• Test various commands with in a shell script

• GetLectures.sh
• Demonstrate reading URLs from the text file, and downloading (curl) content from

the web

