CSE 384 (Lecture 7): Common
Unix Tools and Shell Scripting

Spring 2020

Overview

e Editors

* Commonly Used Tools
* Editors
* Vi
Grep (regex)
* Locate
* Find
* Sed
* Awk
* Tar
* Gzip

Editors - create/edit text files

* \Vi / Vim originally written in 1976 by Bill Joy, a University of California
at Berkley student who later went on to co-found Sun Microsystems

* Emacs originally written in 1976 by Carl Mikkelsen, David A. Moon and
Guy L. Steele Jr has over 10,000 built-in commands and its user
interface allows the user to combine these commands into macros to
automate work

e ex - EXtended, is a line editor for Unix systems

* GNU nano is a text editor for Unix-like computing systems or operating
environments using a command line interface.

e gedit is the default text editor of the GNOME desktop environment and
part of the GNOME Core Applications.

https://en.wikipedia.org/wiki/Vi
https://en.wikipedia.org/wiki/Bill_Joy
https://en.wikipedia.org/wiki/Emacs
https://en.wikipedia.org/w/index.php?title=Carl_Mikkelsen&action=edit&redlink=1
https://en.wikipedia.org/wiki/David_A._Moon
https://en.wikipedia.org/wiki/Guy_L._Steele_Jr.
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Macro_(computer_science)
https://en.wikipedia.org/wiki/Ex_(text_editor)
https://en.wikipedia.org/wiki/Line_editor
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/GNU_nano
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Command_line_interface
https://en.wikipedia.org/wiki/Gedit
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/GNOME
https://en.wikipedia.org/wiki/Desktop_environment
https://en.wikipedia.org/wiki/GNOME_Core_Applications

VI/VIM - screen-oriented text editor

* vi was originally written in 1976 by Bill Joy, a University of California at
Berkley student who later went on to co-found Sun Microsystems

* lightweight and fast, and always available.
* Important (these days) if the system has no graphical interface
e POSIX compatibility on Unix systems, requires that vi be present

* S vi file.txt
* j, 0, a, etc (insert mode), esc (command mode) ~, cw, dw,
dNw, dd,
* Ex — line editor: S:%s/expression/replacement
e See vi Cheat sheet

e http://www.atmos.albany.edu/daes/atmclasses/atm350/vi che
at sheet.pdf

Class Text: The Linux Command Line (Chapter 12)

http://www.atmos.albany.edu/daes/atmclasses/atm350/vi_cheat_sheet.pdf
https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=165

Commonly used tools...

* grep — search for patterns in text files

* find — search for files in a directory hierarchy

* locate — find files by name

* AWK — (text processing language) pattern scanning and processing
* sed - stream editor for filtering and transforming text

e tar — (tape) archiving utility

* gzip — (gnu) zip — compress and expand files

Sample test file for examples: geekfile.txt

mwecorley@mwcorley-VirtualBox: ~/grep_examples

File Edit View Search Terminal Help

unix is great os. ufix is opensource. unix is free os.

learn operating system.

Unix linux which one you choose.

UNix 1s easy to learn.unix 1s a multiuser os.Learn unix .unix 1s a powerful.

mwcorley 202-23-9191
mwelr 303-33-6565
cpatch 546-11-7856

Grep (G/re/p) - “global regular expression print”

* searches text files for the occurrence text matching a specified regular
expression and outputs any line containing a match to standard
output

* Regular expression

 special text string for describing a search pattern. You can think of regular
expressions as wildcards on steroids.

* Resources / Examples
* Grep
e https://www.geeksforgeeks.org/grep-command-in-unixlinux/
* Regex
* https://www.regular-expressions.info/

e See Class Text: The Linux Command Line Chapter 19

https://www.geeksforgeeks.org/grep-command-in-unixlinux/
https://www.regular-expressions.info/
https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=275

Grep Examples: Class Text: The Linux Command Line Chapter 19

S grep -i "UNix" geekfile.txt
e Search and match lines “UNix” string , disregard case
S grep -ic "UNix" geekfile.txt
* Like previous, but count the match occurrences
S grep -i "AUNix" geekfile.txt
e Search and match lines beginning with string “UNix”, disregard case
S grep -i 'MUnix.*0s.S' geekfile.txt

* Search and match lines beginning with string “UNix”, followed by any number
of characters, and ending with string “os.”

5 grep '[0-9]\{3\}-\{0,1\}[0-9]\{2\}-\{0,1\}[0-9]\{4\}' geekfile.txt

* Match social security numbers -- assume search applications for PlII
(personally identifiable information)

5 grep -H '[0-91\{3\}-\{0,1\}0-9]\{2\}-\{0,1\}[0-9]\{4\} geekfile.txt
5 grep -1 '[0-9]\{3\}-\{0,1\}[0-9]\{2\}-\{0, 1\}[0-9]\{4\}' f*.txt

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=275

Common tools for locating files

* Locate
* Find files by name

* Find
» Search for files in a directory hierarchy

* Xargs
* Build and execute command lines from standard input

Chapter 17: Searching for Files

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=241

Locate - find files by name

» performs a rapid database search of pathnames, and outputs every
name that matches a given substring

* Example
* find all the programs with names that begin with zip
* locate bin/zip
* |locate zip
* |locate zip | grep zip$S

Chapter 17: Searching for Files (Locate)

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=241

Find - search for files in a directory hierarchy

 searches a given directory (and its subdirectories) for files based on a variety of
attributes

e Uses the notion of tests and actions

* Examples
S find ~ | wc -l
S find ~ -type d | wc -I
S find ~ -type f -name "*.c" -size +1k
S find . -type f -name 'f*' -execls-I'{}'";'
S find . -type f-name 'f*' -ok Is - '{}' '}’
S find . -type f -name 'f*" -exec grep -H '[0-90\B\\I\HO-OI2\I\{L\HO-01\A\} (Y 5
Sfind. -type f-name 't*' | xargs grep "[0-91\{3\}-\{1\}0-9]\{2\}-\{1\}[0-O]\{4\}

Chapter 17: Searching for Files

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=241

Xargs

* Accepts input from standard in-put and converts it into an argument list for a
specified command
* Example:
S echo 'one two three' | xargs mkdir
S echo 'one two three' | xargs rmdir
S find ~ -type f -name 'f*' -print | xargs Is -
S time find ~ -type f-name 'f*' -exec grep '[0-9]\{3\}F\{1\}{0-9]\{2\}F\{1\}O-9]\{4\}' '{}' ;'
S time find ~ -type f -name 'f*' | xargs grep '[0-9]\{3\}F\{1\}[0-9]\{2\}-\{1\}[0-9]\{4\}

Sed — Stream editor

* text editing on a stream of text, either a set of specified files or standard
input.

e Use a single editing command (on the command line) or the name of a
script file containing multiple commands

e performs commands upon each line in the stream of text.

sed 's/Unix/windows/gl' geekfile.txt
cat geekfile.txt | sed '4s/unix/windows/gl’
sed 's/[LI]linux/Unix/g' geekfile.txt > output.txt

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=325

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=325

AWK - interpreted programming language

* AWK is an interpreted programming language, specially designed for
text processing. Named after the authors (Alfred Aho, Peter
Weinberger, and Brian Kernighan).

* Typical uses
* Producing formatted text reports,
* Performing arithmetic operations,
* Performing string operations, and many more.

Tutorial: https://www.tutorialspoint.com/awk/awk overview.htm

https://www.tutorialspoint.com/awk/awk_overview.htm

Wait! What is a Shell again ?

* The shell is a program that takes keyboard commands and passes
them to the operating system to carry out.

e Source: The Linux Command Line, Fifth edition, page 2

* The shell is the command interpreter in an operating system such as
Unix or GNU/Linux, it is a program that executes other programs.

* Source: https://www.tecmint.com/different-types-of-linux-shells/

* The shell is both an interactive command language and a scripting
language, and is used by the operating system to control the
execution of the system using shell scripts

* Source: https://en.wikipedia.org/wiki/Shell script

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=26
https://www.tecmint.com/different-types-of-linux-shells/
https://en.wikipedia.org/wiki/Command_language
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Shell_script
https://en.wikipedia.org/wiki/Shell_script

Background

* Bourne Shell (sh): Steven Bourne — 1977
» AT&T Bell Labs for V7 UNIX, remains a useful shell today

* introduced control flows, loops, and variables into scripts, providing a more
functional language to interact with the operating system (both interactively
and noninteractively).

e CShell (csh): Bill Joy - 1978

* A graduate student at the University of California, Berkeley, developed for
Berkeley Software Distribution (BSD) UNIX systems

* A key design objectives for the C shell was to create a scripting language that
looked similar to the C language.

* Introduced command history

This material found at: https://developer.ibm.com/tutorials/I-linux-shells/

https://developer.ibm.com/tutorials/l-linux-shells/

Background

* Tenex C shell (tcsh): Ken Greer, 1983

e Carnegie Mellon University
* backward-compatible with csh, but improved its overall interactive features.

e Korn shell (ksh): David Korn, 1983

e used as a scripting language in addition to being backward-compatible with
the original Bourne shell.

* Bourne-Again Shell (BASH): Brian Fox, 1989
* an open source GNU project intended to replace the Bourne shell
e A superset of the Bourne shell
* incorporated features from the Korn and C shells
* One of the most widely used shells

This material found at: https://developer.ibm.com/tutorials/I-linux-shells/

https://developer.ibm.com/tutorials/l-linux-shells/

Writing Shell Scripts (Overview)

* We've covered the first 9+ chapters of the Linux Command Line

* We've discussed many of the basic commands for navigating, and managing a
Linux system.

» foundational ideas including, Files, I/O redirection and pipelines, a
* handful of the important tools to accomplish useful work.

* However, using the shell by supplying command lines (one a time).
Granted this is useful,

* By joining our tools together into programs of our

* The shell can carry out complex sequences of tasks with the
command line alone, but shell scripts unlock the power of the Linux
system.

Writing Shell Scripts http://linuxcommand.org/Ic3 writing shell scripts.php#contents

https://mwcorley79.github.io/MikeCorley/presentations/TLCL-19.01.pdf#page=387
http://linuxcommand.org/lc3_writing_shell_scripts.php#contents

First BASH script: first.sh

mwecorley@mwcorley-VirtualBox: ~/Desktop/scripts - o

File Edit WView Search Terminal Help

#1 /bin/bash
STRING="
echo $STRING

File Edit WView Search Terminal Help

mwcorley@mwcorley-VirtualBox: ¢ chmod +x first.sh
mwcorley@mwcorley-VirtualBox: $./first.sh

HELLO WORLD!!!
mwcorley@mwcorley-VirtualBox: $ |

Setting up your environment

* Consider putting your scripts in local bin folder: ~/bin and adding
that to your PATH variable: export PATH="~/bin:"SPATH"

* Update the interactive shell by sourcing it. S. .bashrc
* Cause the shell to re-read the .bashrc
* .bashrc is shell script that runs when BASH is started
* jnitializes the interactive shell session
* A second, and better option to update the PATH variable
from .bashrc (or the .profile)

* If your don’t set your PATH, then no problem, you’ll just
have to proceed every script/exe with “./ “ as in
Jscript_name.sh

Shebang (#!) - or the “bang” line

* The #! syntax is used in scripts to indicate an interpreter for execution
under UNIX / Linux operating systems.

* Most script starts with the following line: #!/bin/interpreter
e absolute path to the interpreter need to run the program
* For BASH scripts
e #!/bin/bash
* Python
e #!/usr/bin/python

https://bash.cyberciti.biz/guide/Shebang

https://bash.cyberciti.biz/guide/Shebang

How does #! Work?

* #] - human readable magic number consisting of the byte string
0x23 0x21

* The kernel uses the exec() family of functions (system calls) to determine
whether the executable file to be executed is a script (interpreted) or a
binary

* Need to set the execute bit for exec() to work

» exec() replaces a process image with a new process image: consider a shell:
fork() -> new process -> exec(new process, process image) -> child process

Exec() reads the magic number of executable file, if the “#!” is
present the executable present after #! Is run instead

Run: xxd (hexdump) somescript, man exec, man fork

First script with command line argument

#! /bin/bash
This is our first BASH script
it [$# -gt 1; then
1 $1II

mwcorley@mwcorley-VirtualBox: ~fscripks

File Edit WView Search Terminal Help
mwcorley@mwcorley-VirtualBox:~/scripts$ 1s
cmdArgs.sh
mwcorley@mwcorley-VirtualBox:~/scripts$./cmdArgs.
Hello CSE 384 from mike
mwcorley@mwcorley-VirtualBox:~/scripts$ name=mike
mwcorley@mwcorley-VirtualBox:~/scripts$./cmdArgs.
Hello CSE 384 from mike
mwcorley@mwcorley-VirtualBox:~/scripts$./cmdArgs.
Hello CSE 384 from cmdArgs.sh
mwcorley@mwcorley-VirtualBox:~/scripts$ 1s
cmdArgs.sh
mwcorley@mwcorley-VirtualBox:~/scripts$./cmdArgs. $SHELL
Hello CSE 384 from /bin/bash
mwcorley@mwcorley-VirtualBox:~/scripts$

Special variables to be aware of... (demoSpecialVars1.sh)

* SO - The name of the Bash script.
« §1, 82, $3,... - user (command line) arguments supplied to the Bash script.
* S# - number arguments supplied to the Bash script.

* S@ - All the arguments supplied to the Bash script.
* When quoted expand to separate strings

« $* - All the arguments supplied to the Bash script
* When quoted expand to single string

* $? - The exit status of the most recently run process.

* $S - The process ID of the current script.

e SUSER - The username of the user running the script.

* SHOSTNAME - The hostname of the machine the script is running on.
« SSECONDS - The number of seconds since the script was started.
 SRANDOM - Returns a different random number.

* SLINENO - Returns the current line number in the Bash script.

Source: https://ryanstutorials.net/bash-scripting-tutorial/bash-variables.php
https://www.bogotobogo.com/Linux/linux shell programming tutorial3 special variables.php

https://ryanstutorials.net/bash-scripting-tutorial/bash-variables.php
https://www.bogotobogo.com/Linux/linux_shell_programming_tutorial3_special_variables.php

BASH If Statement: (demolf.sh)

if [<some test>]
then
<commands>

fi

Tests
* brackets ([]) reference to the command test.
» All of the operators that test supports can be used in the if statement
 Sets exit status of O (true) or 1 (false) depending on
the evaluation of EXPR.
* Run man test to see all of the possible operators
e http://linuxcommand.org/lc3 man pages/testh.html

Source: https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php

http://linuxcommand.org/lc3_man_pages/testh.html
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php

Bash Functions: (demoFunctionsLoops.sh)

 functions don’t allow return a values
e return value is the exit status of the last statement executed in the function,
« 0 for success
* non-zero decimal number in the 1 - 255 range for failure
* return status can be specified by using the return keyword
e assigned to the variable S?.
* return statement terminates the function. You can think of it as the

function’s exit status.
* See example
* Source: https://linuxize.com/post/bash-functions/
* Source https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php

https://linuxize.com/post/bash-functions/
https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php

BASH arrays: (demoArrays.sh)

* There a number of ways to declare an use arrays, this is one way..
distro=("redhat" "debian" "gentoo" " mint")

ubuntu

* Source: https://www.cyberciti.biz/fag/finding-bash-shell-array-
length-elements/

https://www.cyberciti.biz/faq/finding-bash-shell-array-length-elements/

Examples: examples.tar.gz

* readExample.sh
 demo BASH keyboard input and output

* demoSpecialVars.sh
 Demonstrate S@,

 demoFunctionsLoops.sh
* Demo BASH loops, functions and return values

 demoArrays.sh
e A quick little array demo

e demoMenu.sh
* Demonstrate to create menu prompt With case statement

 demoCountWords.sh
* Test various commands with in a shell script

e GetLectures.sh

 Demonstrate reading URLs from the text file, and downloading (curl) content from
the web

