
CSE 384
Lecture 8

Introduction to C/C++

Spring 2020

C Language (Background)

• C Programming Language
• Originally developed in 1972 by Dennis Ritchie

• AT&T Bell Labs as a systems programming language
• Unix (and Linux) operating system written in C.

• high-level (imperative/procedure) language, designed to give the programmer
a lot of control while still emphasizing portability

• Before C, operating systems were often written in assembly languages
tied specific machine architectures, greatly limiting portability.

• 1973: Ritchie and Ken Thompson rewrote Unix in C

• Unix and C Language became extremely successful.

• There are used everywhere today in 2020!

C Language: Background (cont.)
• 1978: Brian Kernighan and Dennis Ritchie published “The C

Programming Language” (2nd edition 1988)

• American National Standards Institute (ANSI) C89 standard: ANSI C

• 1990: the International Organization for Standardization (ISO)
adopted ANSI C (with a few minor modifications): C90

• 1999: the ANSI released C99.
• adopted many features which had already made their way into compilers as

extensions (or had been implemented in C++)

• 2011: C11

• 2018: C18 (latest C standard)

Source: https://www.learncpp.com/cpp-tutorial/introduction-to-cplusplus/

https://www.learncpp.com/cpp-tutorial/introduction-to-cplusplus/

C++ Programming Language (background)
• 1979: C++ (C plus plus)

• developed by Bjarne Stroustrup, AT&T Bell Labs as an extension to C
• 1998: standardized by ISO committee, with major updates C++11,

C++14, C++17
• C++20 in works

• Modern C++ is a very powerful and expressive (federation) of
language: a multi-paradigm programming language
• Imperative/procedural (its C Language roots)
• Objected-oriented - classes (encapsulation and information hiding,

inheritance, aggregation, composition, dynamic type binding and
polymorphism)

• Generic – templates (specialization, custom processing policies), functional
template metaprogramming

• Standard Template Library (STL) - Data structure containers, algorithms,
functions, and iterators

C++ Programming Language (background)
• Although C and C++ have evolved independently, there remains a high degree

of compatibility.

• C is essentially a subset of the C++

• In this class we intend to use both C and C++.

• The intent is to use aspects of C++ to facilitate the use of C libraries and
functions needed for system programming on Linux.

• The challenge with using C++ is that is a complex language. As mentioned
earlier, although it is very expressive, but you have to know concepts
about the object model to use it effectively, which could be an entire
course unto itself (see Dr. Fawcett’s previous SU graduate course on
Object-oriented Design using C++:
https://ecs.syr.edu/faculty/fawcett/handouts/webpages/cse687.htm)

• And his recent github site: Modern C++ story here:
https://jimfawcett.github.io/CppStory_Prologue.html

• The intent is to help you gain a foundational working model, and the
proficiency to perform system programming tasks in C and C++.

Nice reference https://www.learncpp.com/cpp-tutorial/introduction-to-cplusplus/

https://ecs.syr.edu/faculty/fawcett/handouts/webpages/cse687.htm
https://jimfawcett.github.io/CppStory_Prologue.html
https://www.learncpp.com/cpp-tutorial/introduction-to-cplusplus/

C/C++ Programming: First things first…

• C and C++ are compiled languages (unlike interpreted languages such as Python,
JavaScript, and BASH scripting etc.)

• Compiled means that source code is (translated/compiled) into native
machine code which can be executed directly on the hardware.

• Scripting languages are NOT compiled, but rather depend on require an
interpreter (another program) to run the instructions.

Image Source: https://www.guru99.com/difference-compiler-vs-interpreter.html

https://www.guru99.com/difference-compiler-vs-interpreter.html

First C program
hello.c

First C++ program
hello.cpp

#include …

• A processor directive for including library (headers) in your program
• think of import in python: same (conceptual) idea

• Basically the same process in C and C++
• In C, all headers end in .h (header):

• e.g. #include <stdio.h>, #include “stack.h”
• In C++ only “user include” headers end in .h:

• #include <iostream>, #include “stack.h”
• Notice: standard C++ headers omit the “.h” in the include

directive
• Standard includes: <iostream>, <stdio.h>, etc.

• Compiler (preprocessor) searches standard include paths: /usr/include etc.

• User includes
• search the user specified header path: include “./myheaders/string.h”

Separate compilation

• Library interface:
• “declarations” of types of functions go into a header file (.h file)

• This provides interface to the library

• “definitions” (implementation) of functions and types go into separate .c/.cpp
file.

• This is a essentially the definition of a package (sometimes in older speak its
called a module)

• Packages give us a necessary strategy for organizing and managing system
structure.

• This a basic construct for partitioning the system and achieving reuse

• Is it imperative to use good package structure in your design for your
system to be successful. We will see examples of this throughout the
semester. See the Package example included in the lecture8 c_examples

BooksCollection Package (structure example)

BookCollection interface

Books.h

#include Books.h
Define/implement

BookCollection

Books.cpp

#include Books.h
Use BookCollection

executive.cpp

Books
Collection

package

* The executive (client)
simply uses the package to
achieve requirements

Books.h Header file
(interface) declares Books
data and functions

Books.c defines
(implements) Books data
and functions

Executive.c (the client application)
uses the services of the Books
package (implements) Books data
and functions

C/C++ Compilation and compute/memory models

• C and C++ Language Comparison
• Dr. Fawcett’s notes from CSE 687: Object-oriented Design (Spring 2019)

• Compilation, computation, and memory models
• Dr. Fawcett’s notes from CSE 687: Object-oriented Design (Spring 2019)

• Program Memory Layout

https://ecs.syr.edu/faculty/fawcett/handouts/CSE687/Lectures/CSE687designConcept0b.htm
https://ecs.syr.edu/faculty/fawcett/handouts/CSE687/presentations/CppModels.pdf
https://www.geeksforgeeks.org/memory-layout-of-c-program/

Examples

• lecture 8 (tarball): lecture8_examples.tar.gz
• C Examples: see folder: c_examples
• C++ Examples: see folder: cpp_examples

• Note: fort the C++ examples you will get a C++ compiler.
• For Mint (Unbunu), open terminal (bash shell) and type the

command -> sudo apt-get install g++

