
Project # 1: Build a minimal shell (minShell): due Sunday April 5th (midnight)

We have seen that a Unix shell (like BASH) is a sophisticated command-interpreter and scripting

language that provides a powerful user interface to the operating system. In the most basic sense, a

shell is a program that executes other programs.

In this project you will build a minimalist shell that supports the following requirements:

1. Display a command prompt for user input (e.g. minShell$)

2. Read user input, parse, and run commands

3. Your shell should support the following features:

a. Shell (built-in) commands: setting/showing shell variables: support shell built-in

command: set/show

i. msh$ set path=./:/bin

ii. msh$ show path

 ./:/bin

iii. msh$ set name=Mike

msh$ show name

 Mike

b. Run (execute) external commands based on a user specified minShell path variable (not

the actual system path variable)

i. msh$ set path=./:/bin

ii. msh$ ls -l/bin /bin

• searches the specified path variable (above) for the ls program, and

if found it executes the command with the arguments specified e.g.

-l /bin

• Note: You will have to parse commands entered by the user to

determine what command and arguments to properly run in your

shell.

• Your shell will need to make use of at least two system calls

o fork – creates a new (child) process by duplicating the

parent process (the minShell process) -- use “man fork” for

the man page

o execv - loads (overlays) an existing process with a new

process image -- use “man execv”. Note: there is a family of

exec functions, but we will use execv for this project

iii. msh$ /bin/ls - (absolute path), should work whether or not path is set

iv. msh$./block_cp (relative path), should run local programs (whether or not path

is set)

That’s it! When your shell supports requirements: 1. 2. 3a and 3b, then submit the code and the output

as separate documents in Blackboard under the Project 1 assignment. Please upload your code with the

name “MinShellCode”, and the output with name “MinShellOutput”.

Note: It is up to you to generate your output/screenshots so that it clearly demonstrates you’ve met

requirements 3a. and 3b. If you don’t clearly demonstrate you meet 3a. and 3b. you may not get full

credit.

Here is an example output from instructor solution:

Helper code: (Process package, CommandManager package, and minShell.cpp executive)

https://mwcorley79.github.io/MikeCorley/lecture18/Project1_helpers/Project1_helpers.tar.

gz

Process.h/.cpp (package): runs external programs (see interface/test stub in .cpp file)

CommandManager.h/.cpp (package): supports creation and management of shell variables, and

searching the path variable

minShell.cpp (executive): implements minShell (msh) using the services of Process package and

CommandManager package

Note: I’ve given lots of help. All you should really need do to complete Project 1 is implement

the two functions: DoProcessExternalCommand, DoProcessBuiltInCommand in minShell.cpp, which

handle the (built-ins) set and show shell variables, and executing external programs respectively. View

the test stubs in Process.cpp and Command Manager.cpp to see how you might implement these

functions.

You are not required to use my helper code. You build all of your code if you like, but you need meet all

of requirements specified above

Background and thoughts and Starting

The basic processing logic for a minimalist shell might be summarized by the following steps:

1. Display prompt to the user (e.g. minShell$)

2. Wait for a command from the user

3. parse the command

4. execute the command

5. return to step 1

To begin building your minShell you might start by building a program in C or C++ that run (executes)

other programs. To do that, consider the steps (1-5) outlined above:

1. Write a while loop that will display a prompt, and then waits/reads input from the user.

a. Reading input from the user means the user types a command line and presses

enter/return

2. Parse the command line

a. Parsing the command means to extracting the parts and determine what actions(s)

to take. i.e. set/get shell variables or run/execute an external command. For

example:

i. msh$ set path=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin

ii. msh$ ls -l

3. Executing the parsed command requires the creation of a new (child) process. Creating a

new process is performed with the fork system call, followed by an exec system call to load

the process image specified in the command

a. When a shell executes a command, it first creates a copy of itself (the child process

by calling fork). It then calls exec in the child process to load/run the command by

loading specified program image into (overlaying) child process with the specified

program image (See Figure 1 below for an illustration of the process).

i. Please read the following Lecture from USNA to begin getting a grasp on the

concept:

https://www.usna.edu/Users/cs/aviv/classes/ic221/s16/lec/14/lec.html

• Note: I intend to give a significant amount of helper code. That will

be posted soon, and a notification will be sent via piazza

This is the basic idea:

https://www.usna.edu/Users/cs/aviv/classes/ic221/s16/lec/14/lec.html

Image source: http://www.it.uu.se/education/course/homepage/os/vt18/module-

2/process-management/

Figure 1: Command Execution

http://www.it.uu.se/education/course/homepage/os/vt18/module-2/process-management/
http://www.it.uu.se/education/course/homepage/os/vt18/module-2/process-management/

